Human fetal skeletal muscle contains a myogenic side population that expresses the melanoma cell-adhesion molecule.
نویسندگان
چکیده
Muscle side population (SP) cells are rare myogenic progenitors distinct from satellite cells, the known tissue-specific stem cells of skeletal muscle. Studies in mice demonstrated that muscle SP cells give rise to satellite cells in vivo. Given that muscle SP cells are heterogeneous, it has been difficult to prospectively enrich for myogenic progenitors within the SP fraction, particularly from human tissue. Further, conditions that favor the expansion of human muscle SP cells while retaining their myogenic potential have yet to be reported. In this study, human fetal muscle SP and main population (MP) cells were purified based on the expression of melanoma cell adhesion molecule (MCAM), a marker we previously reported to enrich for cells with myogenic potential. To define the relationship between MCAM expression and the degree of myogenic commitment, single cells were analyzed for the expression of myogenic-specific markers. Myogenic factors strongly associated with MCAM expression in single cells, particularly Myf5. Different MCAM+ populations, including SP cells, were expanded and assayed for fusion potential in vitro and engraftment potential in vivo. All MCAM+ subpopulations fused robustly into myotubes in vitro, whereas the MCAM- subpopulations did not. Further, MCAM+ SP cells exhibited the highest fusion potential in vitro and were the only fraction to engraft in vivo, although at low levels, following propagation. Thus, MCAM can be used to prospectively enrich for myogenic muscle SP cells in human fetal muscle. Moreover, we provide evidence that human MCAM+ SP cells have intrinsic myogenic activity that is retained after propagation.
منابع مشابه
Melanoma cell adhesion molecule is a novel marker for human fetal myogenic cells and affects myoblast fusion.
Myoblast fusion is a highly regulated process that is important during muscle development and myofiber repair and is also likely to play a key role in the incorporation of donor cells in myofibers for cell-based therapy. Although several proteins involved in muscle cell fusion in Drosophila are known, less information is available on the regulation of this process in vertebrates, including huma...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کاملExpression of the dystrophin isoform Dp71 in differentiating human fetal myogenic cultures.
The dystrophin gene defective in Duchenne muscular dystrophy (DMD) is extreme in size and complexity with several promoters which direct expression of different isoforms in different tissues. In contrast with adult skeletal muscle which expresses 427 kDa dystrophin, fetal muscle tissue expresses the 71 kDa ubiquitous isoform Dp71 as well as 427 kDa muscle dystrophin. To examine Dp71 expression ...
متن کاملRegulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin
Skeletal muscle side population (SP) cells are thought to be "stem"-like cells. Despite reports confirming the ability of muscle SP cells to give rise to differentiated progeny in vitro and in vivo, the molecular mechanisms defining their phenotype remain unclear. In this study, gene expression analyses of human fetal skeletal muscle demonstrate that bone morphogenetic protein 4 (BMP4) is highl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 21 16 شماره
صفحات -
تاریخ انتشار 2012